1. The plane Π has vector equation

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
0 \\
4
\end{array}\right]
$$

(a) Find an equation $a x_{1}+b x_{2}+c x_{3}=d$ for the plane Π.

ANS: We can take $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right] \times\left[\begin{array}{c}-3 \\ 0 \\ 4\end{array}\right]=\left[\begin{array}{c}8 \\ -4 \\ 6\end{array}\right]$ so that an equation for Π is

$$
8 x_{1}-4 x_{2}+6 x_{3}=-32 \text { or } 4 x_{1}-2 x_{2}+3 x_{3}=-16
$$

An alternate way to do the question is to solve the equations $s-3 t=x_{1}+4,2 s=x_{2}$ for s, t to get $s=x_{2} / 2, t=x_{2} / 6-x_{1} / 3-4 / 3$ and use the fact that $x_{3}=4 t$ to get $x_{3}=x_{2} / 2-4 x_{1} / 3-16 / 3$ or $4 x_{1}-2 x_{2}+3 x_{3}=-16$.
(b) Find the point Q in the plane $2 x+3 y+z=10$ which is closest to the point $P(7,7,3)$.

ANS: The line perpendicular to the given plane and passing through the point $(7,7,3)$ has the equation $x=7+2 t, y=7+3 t, z=3+t$. The line meets the plane in the point corresponding to the parameter value t satisfying $2(7+2 t)+3(7+3 t)+(3+t)=10$. This gives $t=-2$ which makes the closest point $(3,1,1)$.

An alternate way to do the question is to use the fact that $Q(5,0,0)$ is on the plane and to note that the closest point can be obtained by adding to the coordinates of P the projection of $\overrightarrow{P Q}=(-2,-7,-3)$ onto the normal $(2,3,1)$ of the given plane. This gives the point $(7,7,3)+\frac{-28}{14}(2,3,1)=(3,1,1)$.
2. (a) Find the equation of the line passing through the points $A(1,2,3)$ and $B(2,1,5)$.

ANS: A direction vector for the line is $\overrightarrow{A B}=(1,-1,2)$ so that the equation for the line in parametric form is $x=1+t, y=2-t, z=3+2 t$.
(b) Find the distance between the line in part (a) and the line $x=2-2 t, y=4+2 t, z=7-4 t$.

ANS: The point $C(2,4,7)$ lies on the given line. If A and B are the points in part (a) then the distance d between the two lines is area of the parallelogram with sides parallel to $\overrightarrow{A B}$ and $\overrightarrow{A C}$ divided by the length of $\overrightarrow{A B}$. Now $\overrightarrow{A B} \times \overrightarrow{A C}=(1,-1,2) \times(1,2,4)=(-8,-2,3)$ and the area of the parallelogram is $\|\overrightarrow{A B} \times \overrightarrow{A C}\|=\sqrt{77}$ so that $d=\sqrt{77} / \sqrt{6}=\sqrt{77 / 6}$.

Alternatively, d is the length of $A C-\frac{\overrightarrow{A C}}{\overrightarrow{A B}} \cdot \overrightarrow{\overrightarrow{A B}} \overrightarrow{\overrightarrow{A B}} \overrightarrow{A B}=(1,2,4)-\frac{7}{6}(1,-1,2)=\frac{1}{6}(-1,19,10)$ which is $\sqrt{462} / 6=$ $\sqrt{77 / 6}$.
3. Let A be the matrix

$$
A=\left[\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 4 & 4 & 4 \\
1 & 2 & -3 & -8 & 0 \\
1 & 2 & -1 & -6 & 2
\end{array}\right]
$$

(a) Bring A to row reduced echelon form. Clearly indicate each of the elementary operations that you use.

ANS:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 4 & 4 & 4 \\
1 & 2 & -3 & -8 & 0 \\
1 & 2 & -1 & -6 & 2
\end{array}\right] \begin{array}{l}
R_{1} \leftrightarrow R_{3} \\
R_{2} \leftrightarrow R_{4}
\end{array}\left[\begin{array}{ccccc}
1 & 2 & -3 & -8 & 0 \\
1 & 2 & -1 & -6 & 2 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 4 & 4 & 4
\end{array}\right] \begin{array}{c}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{4} \rightarrow R_{4}-R_{3}
\end{array}\left[\begin{array}{ccccc}
1 & 2 & -3 & -8 & 0 \\
0 & 0 & 2 & 2 & 2 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& R_{2} \leftrightarrow R_{3}\left[\begin{array}{ccccc}
1 & 2 & -3 & -8 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{c}
\\
R_{1} \rightarrow R_{1}+3 R_{2} \\
R_{3} \rightarrow R_{3}-2 R
\end{array}\left[\begin{array}{ccccc}
1 & 2 & 0 & -5 & 3 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

(b) Find bases for the row space, column space and null space of A.

ANS: $(1,2,0,-5,3),(0,0,1,1,1)$ is a basis for the row space and $(0,0,1,1)^{T},(1,4,-3,-1)^{T}$ is a basis for the column space.
The nullspace of A is the solution space of $x_{1}+2 x_{2}-5 x_{3}+3 x_{4}=0, x_{3}+x_{4}+x_{5}=0$. Solving for the leading variables x_{1}, x_{3}, we get $x_{1}=-2 x_{2}+5 x_{3}-3 x_{4}, x_{3}=-x_{4}-x_{5}$ from which the general solution is $a(-2,1,0,0,0)^{T}+b(5,0,-1,1,0)^{T}+c(-3,0,-1,0,1)^{T}$. Thus the independent sequence of vectors $(-2,1,0,0,0)^{T},(5,0,-1,1,0)^{T},(-3,0,-1,0,1)^{T}$ is the required basis of the nullspace
4. (a) Prove or disprove the following statement:

$$
\operatorname{Span}((1,2,-1,-2),(2,1,2,-1))=\operatorname{Span}((-1,4,-7,-4),(8,7,4,-7))
$$

ANS:

Let $W_{1}=\operatorname{Span}((1,2,-1,-2),(2,1,2,-1)), W_{2}=\operatorname{Span}((-1,4,-7,-4),(8,7,4,-7))$.

$$
\begin{aligned}
W_{1} & =\operatorname{Span}((1,2,-1,-2),(0,-3,4,3))=\operatorname{Span}((1,2,-1,-2),(0,1,-4 / 3,-1)) \\
& =\operatorname{Span}((1,0,5 / 3,0) \\
W_{2}= & \operatorname{Span}((-1,4,-7,-4),(0,39,-52,-39))=\operatorname{Span}((1,-4,7,4),(0,1,-4 / 3,-1))) \\
= & \operatorname{Span}(1,0,5 / 3,0)=\mathrm{W}_{1} .
\end{aligned}
$$

Alternatively $(1,2,-1,-2)=3(1,2,-1,-2)-2(2,1,2,-1),(8,7,4,-7)=2(1,2,-1,-2)+3(2,1,2,-1)$ which shows that W_{2} is a subspace of W_{1} and hence that $W_{1}=W_{2}$ since they both have dimension 2 .
(b) If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbb{R}^{n} for which values of k are the vectors $k \mathbf{u}+\mathbf{v}, \mathbf{v}+k \mathbf{w}, \mathbf{w}+k \mathbf{u}$ linearly independent?

ANS: Since $a(k u+v)+b(v+k w)+c(w+k u)=(k a+k c) u+(a+b) v+(k b+c) w$ we have $a(k u+$ $v)+b(v+k w)+c(w+k u)=0$ if and only if $k a+k c=0, a+b=0, k b+c=0$ which is equivalent to $a+b=0, k b-k c=0, k b+c=0$ since u, v, w are linearly independent and hence to $a+b=0, k b-k c=$ $0,(k+1) c=0$ which has a non-trivial solution (a, b, c) if and only if $k=0,-1$. Hence the given vectors are linearly independent if and only if $k=0,-1$.
5. (a) Let $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection in the line $2 x+5 y=0$. Find two linearly independent eigenvectors of R and give their corresponding eigenvalues. You may use either the matrix of T or geometric reasoning.

ANS: Since $((5,-2)$ is on the line we have $R((5,-2))=(5,-2)$ which shows that $(5,-2)$ is an eigenvector of R with eigenvalue 1 .
Since $(2,5)$ is on the line through the origin perpendicular to $2 x+5 y=0$ we have $R((2,5))=-(2,5)$ which shows that $(2,5)$ is an eigenvector of R with eigenvalue -1 .
The required independent eigenvectors are $(5,-2),(2,5)$.
(b) Find the standard matrix A of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ determined by the conditions

$$
T\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-3 \\
6
\end{array}\right] \quad, \quad T\left(\left[\begin{array}{l}
5 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

ANS: We have $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=y_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+y_{2}\left[\begin{array}{l}5 \\ 3\end{array}\right]$ if and only if $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ and hence if and only if

$$
\begin{gathered}
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right]^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { which gives } y_{1}=3 x_{1}-5 x_{2}, y_{2}=-x_{1}+2 x_{2} \text {. Hence }} \\
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=y_{1} T\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)+y_{2} T\left(\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left(3 x_{1}-5 x_{2}\right)\left[\begin{array}{c}
-3 \\
6
\end{array}\right]+\left(-x_{1}+2 x_{2}\right)\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-7 x_{1}+11 x_{2} \\
17 x_{1}-28 x_{2}
\end{array}\right]\right.
\end{gathered}
$$

Hence the standard matrix of T is $\left[\begin{array}{cc}-7 & 11 \\ 17 & -28\end{array}\right]$.
6. Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

(a) Find the inverse of A and write A^{-1} as a product of elementary matrices.

ANS:

$$
\begin{gathered}
{\left[\begin{array}{lll|lll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 3 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & \mid & -1 & 1 \\
0 \\
0 & 1 & 2 & \mid & -1 & 0 \\
1
\end{array}\right] R_{3} \rightarrow R_{3}-R_{2}} \\
\\
{\left[\begin{array}{lll|l|ll}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 2 & 0 & -1 & 1
\end{array}\right]{ }_{R_{3} \rightarrow R_{3} / 2}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 / 2 & 1 / 2
\end{array}\right]} \\
\\
R_{1} \rightarrow R_{1}-R_{3}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 1 / 2 & -1 / 2 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 / 2 & 1 / 2
\end{array}\right]=\left[I \mid A^{-1}\right]
\end{gathered}
$$

The elementary matrices $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$ corresponding to the above elementary operations are

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], E_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right], E_{4}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / 2
\end{array}\right], E_{5}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and $A^{-1}=E_{5} E_{4} E_{3} E_{2} E_{1}$.
(b) Write A as a product of elementary matrices.

ANS:

$$
\begin{aligned}
A & =\left(E_{5} E_{4} E_{3} E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

7. (a) Let A be an invertible 3×3 matrix. Suppose it is known that

$$
A=\left[\begin{array}{ccc}
u & v & w \\
3 & 3 & -2 \\
x & y & z
\end{array}\right] \text { and that } \operatorname{adj}(A)=\left[\begin{array}{rcc}
a & 3 & b \\
-1 & 1 & 2 \\
c & -2 & d
\end{array}\right] .
$$

Find $\operatorname{det}(A)$. (Give an answer not involving any of the unknown variables.)
ANS:
Since $A \operatorname{adj}(A)=\operatorname{det}(A) I$ and the $(2,2)$-th entry of $\operatorname{Aadj}(A)$ is $[3,3,-2][3,1,-2]^{T}=16$ we see that $\operatorname{det}(A)=16$.
(b) If A is a matrix such that $A^{2}-A+I=0$ show that A is invertible with inverse $I-A$.

ANS: $(I-A) A=A-A^{2}=I$ and $A(I-A)=A-A^{2}=I$.
8. Let $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.
(a) Find the eigenvalues of A and a basis for each of its eigenspaces.

ANS: Since the row sums are all 2 we see that $[1,1,1]^{T}$ is an eigenvector with eigenvalue 2 . Also -1 is an eigenvalue with algebraic multiplicity 2 since null $(A+I)=\operatorname{span}\left([1,-1,0]^{T},[1,0,-1]^{T}\right)$. Since eigenvectors corresponding to distinct eigenvalues are linearly independent it follows that the eigenspace for the eigenvalue 1 has $[1,1,1]^{T}$ as basis. One could also find the eigenvalues by showing the the characteristic polynomial $\operatorname{det}(\lambda I-A)=(\lambda-2)(\lambda+1)^{2}$.
(b) Find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.

ANS: Since eigenvectors corresponding to distinct eigenvalues are linearly independent it follows that $[1,-1,0]^{T},[1,0,-1]^{T},[1,1,1]^{T}$ is a basis of \mathbb{R}^{3} consisting of eigenvectors of A. If P is the matrix with these columns then $P^{-1} A P=\operatorname{diag}(-1,-1,2)$.
9. (a) For which values of k is the matrix $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & k\end{array}\right]$ diagonalizable?

ANS: The characteristic polynomial of this matrix is $(\lambda-1)(\lambda-2)(\lambda-k)$. Since the matrix is diagonalizable if the eigenvalues are all distinct it follows that the matrix is diagonalizable if $k \neq 1,2$. If $k=1$ the algebraic multiplicity is 2 but the geometric multiplicity of the eigenvalue 1 is 1 and so the matrix is not diagonalizable. If $k=2$ the geometric and algebraic multiplicity of the eigenvalue 2 are both equal. Since this is the case for the other eigenvalue 1 we see that the matrix is diagonalizable when $k=1$.
(b) Let A and B be diagonalizable 2×2 matrices. If every eigenvector of A is an eigenvector of B show that $A B=B A$.

ANS: Let $A X=a X, A Y=b Y$. Then $B X=c X, B Y=d Y$. Let P be the matrix whose columns are X, Y. Then $P^{-1} A B$ and $P^{-1} B P$ are diagonal matrices and hence commute. But $A B=B A$ if and only if $P^{-1} A B P=P^{-1} B A P$. But

$$
P^{-1} A B P=P^{-1} A P P^{-1} B P, \quad P^{-1} B A P=P^{-1} B P P^{-1} A P
$$

which shows that $P^{-1} A B P=P^{-1} B A P$.
10. Let $q(\mathbf{X})=3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}$.
(a) Find an orthogonal change of coordinates $\mathbf{X}=P \mathbf{Y}$ such that $q(\mathbf{X})=a y_{1}^{2}+b y_{2}^{2}$ for suitable scalars a, b. ANS: If $X=\left[x_{1}, 2\right]^{T}$ we have $q(X)=X^{T} A X$ where $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$. If P is the matrix whose columns are $P_{1}=[1 / \sqrt{2}, 1 / \sqrt{2}]^{T}, P_{2}=[-1 / \sqrt{2}, 1 / \sqrt{2}]^{T}$, we have $P^{-1} A P=\left[\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right]$ and $P^{-1}=P^{T}$. Setting $Y=P^{T} X=\left[y_{1}, y_{2}\right]^{T}$, we get $q(X)=Y^{T} P^{T} A P Y=4 y_{1}^{2}+2 y_{2}^{2}$.
(b) Find the maximum and minimum values of q on the circle $\|\mathbf{X}\|=1$.

ANS: We have $2\|Y\|^{2} \leq q(X) \leq 4\|Y\|^{2}$ and hence $2\|Y\|^{2} \leq q(X) \leq 4\|Y\|^{2}$ since P orthogonal implies $\|X\|=\|Y\|$. Hence $2 \leq q(X) \leq 4$ if $\|X\|=1$. The maximum of 4 is attained at $X=P_{1}$ and the minimum of 2 is attained at $X=P_{2}$.

